3D Microstructural Effects in Biphasic Steel Cutting
نویسنده
چکیده
A three dimensional (3D) fully coupled thermal-mechanical analysis is presented in order to evaluate the influence of certain cutting parameters as well as dual phase microstructure on the orthogonal micro cutting process of steels (in particular, AISI 1045 steel), for which the size of heterogeneities is of the order of magnitude of the uncut chip thickness and tool edge radius. The simulated microstructure is composed of successive hexagonal close-packed layers with grain size control allowing to reproduce the desired fraction volume of the two considered constituents. Based on Johnson-Cook failure criteria inside the constitutive phases and a cohesive zone model along their interfaces, the numerical model is able to take into account both intra and inter granular damage initiation and evolution. Through an analysis of variance (ANOVA) method, a systematic study of the 3D microstructural effects and the relative effect of the pearlite-ferrite phases with respect to cutting settings (cutting speed, tool rake angle and tool radius) is carried out. Key-Words: Micro-cutting, FEA, Inter/intra granular damage, 3D microstructure modeling
منابع مشابه
Microstructure-based 3d Fe Modeling for Micro Cutting Ferritic- Pearlitic Carbon Steels
The mechanics of the cutting process on the microscopic level differ fundamentally from the conventional macro cutting. For example, the tool edge radius influences the cutting mechanism in micro machining significantly with regard to the effective rake angle, the minimum chip thickness, the dominance of ploughing, and the related elasto-plastic deformation of the workpiece material. These phen...
متن کاملCutting Force Prediction in End Milling Process of AISI 304 Steel Using Solid Carbide Tools
In the present study, an attempt has been made to experimentally investigate the effects of cutting parameters on cutting force in end milling of AISI 304 steel with solid carbide tools. Experiments were conducted based on four factors and five level central composite rotatable design. Mathematical model has been developed to predict the cutting forces in terms of cutting parameters such as he...
متن کاملSurface Roughness, Machining Force and FlankWear in Turning of Hardened AISI 4340 Steel with Coated Carbide Insert: Cutting Parameters Effects
The current experimental study is to investigate the effects of process parameters (cutting speed, feed rate and depth of cut) on performance characteristics (surface roughness, machining force and flank wear) in hard turning of AISI 4340 steel with multilayer CVD (TiN/TiCN/Al2O3) coated carbide insert. Combined effects of cutting parameter (v, f, d) on performance outputs (Ra, Fm and VB) ar...
متن کاملشبیهسازی عددی گرمایی- ساختاری فرایند کوئنچ فولادها
In this work, a 3D thermo-microstructural model was developed to simulate the continuous cooling of steel. The model was employed for simulation of cooling process of the gears made from a plain carbon steel (AISI 1045) and a low alloy steel (AISI 4140). Temperature-dependent heat transfer coefficients for two different quenching media were evaluated by experimental and computational methods. ...
متن کاملOptimization of the retail steel distribution industry
The present work proposes new heuristics and algorithms for the 3D Cutting and Packing class of problems. Specifically the cutting stock problem and a real-world application from the retail steel distribution industry are addressed. The problem being addressed for the retail steel distribution industry is the retail steel cutting problem, which is how to cut steel in order to satisfy the custom...
متن کامل